
Retail Store Performance Analysis

Queries

1. Which store format has the highest average security incidents per store?

Objective:

To identify which store format experiences the highest average security incidents per store. This information could be crucial for decision-makers considering
adjustments to security measures.

SQL Code:

In [1]: import pyodbc
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: # Establish the connection
conn_string = (
 "Driver={SQL Server};"
 "Server=DESKTOP-IV08R9B\\SQLEXPRESS;"
 "Database=Target;"
 "Trusted_connection=yes;"
)

In [3]: # Function to run queries through my database
def run_sql(query, conn_string=conn_string):
 try:
 # Connect to the database
 conn = pyodbc.connect(conn_string)

 # Create a cursor object
 cursor = conn.cursor()

 # Execute the SQL query
 cursor.execute(query)

 # Check if the query returned a result set
 if cursor.description is not None:
 # Fetch all rows
 data = cursor.fetchall()

 if len(data) > 0:
 # Get column names from cursor description
 columns = [column[0] for column in cursor.description]

 # Create a DataFrame from the fetched data and column names
 df = pd.DataFrame([tuple(row) for row in data], columns=columns)

 return df
 else:
 print("The query returned no results.")

 else:
 # Commit the transaction if needed
 conn.commit()
 print("Query executed successfully.")

 except pyodbc.Error as e:
 sqlstate = e.args[0] if e.args else None
 print(f"An error occurred: SQL State: {sqlstate}, Error Message: {e}")

 finally:
 # Close the cursor and connection
 cursor.close()
 conn.close()

In [4]: query = """
SELECT
 TOP 5
 SI.Store_Format,
 AVG(TC.Security_Incident_Count) AS Avg_Security_Incidents
FROM
 Store_Information SI
 INNER JOIN TruCase_Incidents TC ON SI.Store_Number = TC.Store_Number

Output:

StoreFormat_47 has by far the highest average at 14 incidents per store followed by StoreFormat_03 at 3 incidents per store and StoreFormat_36 at 2
incidents per store.

Store_Format Avg_Security_Incidents

0 StoreFormat_47 14

1 StoreFormat_03 3

2 StoreFormat_36 2

3 StoreFormat_37 1

4 StoreFormat_40 1

Visualization:

GROUP BY
 SI.Store_Format
ORDER BY
 Avg_Security_Incidents DESC;
"""
df_query_1 = run_sql(query)

In [5]: df_query_1

Out[5]:

In [6]: # Create the plot
ax = df_query_1.plot(x="Store_Format", y="Avg_Security_Incidents", kind='bar', title="Average Security Incidents by Store Format", figsize=

Rotate the x-tick labels by 45 degrees
ax.set_xticklabels(df_query_1["Store_Format"], rotation=45)

Show the plot
plt.show()

Analysis:

Based on the data, we can see that StoreFormat_47 has by far the highest average security incidents per store. This information could be used to allocate
more security resources to StoreFormat_47 stores.

2. Which states have the highest average recorded daily theft?

Objective:

To determine which states have the highest average recorded daily theft. Understanding this can help regional managers focus their loss prevention efforts.

SQL Code:

In [7]: query = """
SELECT
 TOP 10
 SI.State,
 ROUND((SUM(TC.Total_Theft_Proven) / COUNT(TC.Incident_Month_Year)) / 30,2) AS Average_Daily_Theft
FROM
 TruCase_Incidents TC
 INNER JOIN Store_Information SI ON TC.Store_Number = SI.Store_Number
GROUP BY
 SI.State
ORDER BY
 Average_Daily_Theft DESC;

Output:

State_38 has the highest daily theft at $991.13 per store per day followed by State_03 and State_20.

State Average_Daily_Theft

0 State_38 991.13

1 State_03 802.19

2 State_20 796.59

3 State_41 794.43

4 State_26 771.40

5 State_21 584.47

6 State_30 551.42

7 State_34 512.40

8 State_14 488.16

9 State_24 448.99

Visualization:

[Text(0, 0, 'State_38'),
 Text(1, 0, 'State_03'),
 Text(2, 0, 'State_20'),
 Text(3, 0, 'State_41'),
 Text(4, 0, 'State_26'),
 Text(5, 0, 'State_21'),
 Text(6, 0, 'State_30'),
 Text(7, 0, 'State_34'),
 Text(8, 0, 'State_14'),
 Text(9, 0, 'State_24')]

"""
df_query_2 = run_sql(query)

In [8]: df_query_2

Out[8]:

In [9]: # Prepare the plot
ax = df_query_2.plot(
 x="State",
 y="Average_Daily_Theft",
 kind="bar",
 title="Top 10 States for Average Daily Theft $",
 figsize=(10, 10)
)

Set x-tick labels with rotation
ax.set_xticklabels(df_query_2["State"], rotation=45)

Out[9]:

Analysis:

The states with the highest average recorded daily theft are State_38, State_03, and State_20. Loss prevention initiatives might be more effectively focused on
stores in these states.

3. Has the recent boycott actually affected our store?

Objective:

To assess the impact of a recent boycott campaign on our stores by comparing sales data before and after the boycott started.

SQL Code:

In [10]: query = """
SELECT
 YEAR(Sale_Week) AS Year,
 MONTH(Sale_Week) AS Month,
 ROUND(SUM(Sales), 2) as Total_Sales
FROM
 Sales_MyStore
WHERE
 (YEAR(Sale_Week) = YEAR(GETDATE())
 OR YEAR(Sale_Week) = YEAR(GETDATE()) - 1
 OR YEAR(Sale_Week) = YEAR(GETDATE()) - 2)
 AND MONTH(Sale_Week) BETWEEN 5 and 7
GROUP BY
 YEAR(Sale_Week),
 MONTH(Sale_Week)

Output:

2023 has the lowest sales total over all three tracked years for the months of May, June, and July.

Year Month Total_Sales

0 2021 5 2575229.18

1 2021 6 2286855.56

2 2021 7 2183358.84

3 2022 5 2499580.98

4 2022 6 2113931.31

5 2022 7 2736213.53

6 2023 5 1782920.42

7 2023 6 1868838.56

8 2023 7 1089515.23

Visualization:

ORDER BY
 Year ASC,
 Month ASC;
"""
df_query_3 = run_sql(query)

In [11]: df_query_3

Out[11]:

In [12]: # Create a dictionary to map month numbers to month names
month_name_map = {5: 'May', 6: 'June', 7: 'July'}

Create subplots
fig, axs = plt.subplots(1, 3, figsize=(15, 7))

Loop through each unique month
for index, month in enumerate(df_query_3['Month'].unique()):
 ax = axs[index]
 # Filter DataFrame for each specific month
 df_month = df_query_3[df_query_3['Month'] == month]

 # Sort by Year for plotting and calculations
 df_month = df_month.sort_values('Year')

 # Calculate YoY change
 df_month['YoY Change'] = df_month['Total_Sales'].pct_change() * 100

 # Plot data
 bars = ax.bar(df_month['Year'], df_month['Total_Sales'], color='blue')

 # Use month name instead of month number for the title
 month_name = month_name_map.get(month, f'Month {month}')
 ax.set_title(f"{month_name} Total Sales $ by Year")

 ax.set_xlabel('Year')

 # Set y-label only for the first subplot
 if index == 0:
 ax.set_ylabel('Total Sales')

 # Set x-ticks to only include unique years in the data for this month
 ax.set_xticks(df_month['Year'].unique())

 # Annotate with YoY change
 for bar, yoy in zip(bars, df_month['YoY Change']):
 height = bar.get_height()
 if not np.isnan(yoy):
 ax.text(bar.get_x() + bar.get_width() / 2.0, height, f'{yoy:.2f}%', ha='center', va='bottom')

plt.tight_layout()
plt.show()

Analysis:

Sales have gradually been dropping year-over-year but drastically dropped in 2023. In May, the year-over-year drop by percentage was 28.67%, for June it
was 11.59%, and for July it was a staggering 60.18% drop. If the question is "Did the boycott have any change in sales?", the answer seems to be yes.

4. Which employees have reported the most empty packages in the current month?

Objective:

To identify the employees who have reported the most empty packages in the current month. This could help in internal training and awareness programs.

SQL Code:

Output:

EmployeeID_231 has the highest total retail price of $285.96, followed by EmployeeID_098 and EmployeeID_196.

In [13]: query = """
SELECT
 TOP 10
 EI.Employee_ID,
 ROUND(SUM(DI.Official_Retail_Price),2) AS Retail_Price_Sum,
 SUM(EP.Quantity) AS Number_of_Items
FROM
 Employee_Info_MyStore EI
 INNER JOIN Empty_Packages_MyStore EP ON EI.Employee_ID = EP.Reported_By_ID
 INNER JOIN DPCI_Info DI ON EP.DPCI = DI.DPCI
WHERE
 MONTH(EP.Reported_Date) = (SELECT MONTH(MAX(Reported_Date)) FROM Empty_Packages_MyStore)
 AND YEAR(EP.Reported_Date) = (SELECT YEAR(MAX(Reported_Date)) FROM Empty_Packages_MyStore)
GROUP BY
 EI.Employee_ID
ORDER BY
 Retail_Price_Sum DESC
"""
df_query_4 = run_sql(query)

In [14]: df_query_4

Employee_ID Retail_Price_Sum Number_of_Items

0 EmployeeID_231 285.96 20

1 EmployeeID_098 165.98 2

2 EmployeeID_196 130.43 11

3 EmployeeID_147 111.98 7

4 EmployeeID_109 104.98 2

5 EmployeeID_018 83.00 6

6 EmployeeID_220 69.99 5

7 EmployeeID_067 68.96 5

8 EmployeeID_178 64.97 4

9 EmployeeID_187 58.97 5

Visualization:

Out[14]:

In [15]: fig, ax1 = plt.subplots(figsize=(10,10))

Plot Retail_Price_Sum as a line chart on the first y-axis
ax1.bar(df_query_4["Employee_ID"], df_query_4["Retail_Price_Sum"], color='g', label='Retail Price Sum')
ax1.set_xlabel('Employee_ID')
ax1.set_ylabel('Retail_Price_Sum', color='g')
ax1.tick_params(axis='y', labelcolor='g')

Explicitly set x-ticks to match each unique Employee_ID and rotate for visibility
ax1.set_xticks(df_query_4["Employee_ID"])
ax1.set_xticklabels(df_query_4["Employee_ID"], rotation=45)

Create the second y-axis
ax2 = ax1.twinx()

Plot Number_of_Items as a bar chart on the second y-axis
ax2.plot(df_query_4["Employee_ID"], df_query_4["Number_of_Items"], color='b', label='Number of Items', alpha=0.6)
ax2.set_ylabel('Number_of_Items', color='b')
ax2.tick_params(axis='y', labelcolor='b')

Add a title
plt.title('Empty Packages Retail Value $ and Count by EmployeeID')

Show the plot
plt.show()

Analysis:

Employees 231, 098, and 196 have reported the most empty packages for the current month, suggesting they are vigilant or perhaps their sections are more
prone to theft or loss. It is interesting to see that the second highest retail sum but only have two items recorded meaning a much higher average cost per
item. This could be worth investigating.

Stored Procedures

Create a stored procedure to pull specific employee information

Objective:

To simplify the process of pulling comprehensive information about employees, including their employment history, roles, and current projects.

SQL Code:

Query executed successfully.

In [16]: # Drop stored procedure if it exists
query = "DROP PROCEDURE GetEmployeeDetails"
run_sql(query)

In [17]: # Create stored procedure to pull employee information
query = """

Query executed successfully.

Usage:

To call the stored procedure, use EXEC GetEmployeeInfo @EmployeeID = "EmployeeID_XXX";

Output:

This shows a single employee's information.

Store_Number Employee_ID Original_Hire_Date Termination_Date Employee_Name Probation_Y_N Minor_Y_N Job_Description Job_Departme

0 Store_8353 EmployeeID_001 2019-09-26 2022-04-26 EmployeeName_177 None None JobDescription_19 JobDepartmen

Views

Create a view to pull recent return divisions

Objective:

To provide an easy way to see the categories of items that are most frequently returned, aiding in quality control and inventory management.

SQL Code:

Query executed successfully.

Query executed successfully.

Usage:

To call the stored procedure, use SELECT * FROM Recent_Return_Divisions;

CREATE PROCEDURE GetEmployeeDetails
 @EmployeeID VARCHAR(20)
AS
BEGIN
 SELECT *
 FROM Employee_Info_MyStore
 WHERE Employee_ID = @EmployeeID;
END;
"""
run_sql(query)

In [18]: # Execute stored procedure on EmployeeID_001
query = "EXEC GetEmployeeDetails @EmployeeID = 'EmployeeID_001';"
df_stored_procedure = run_sql(query)

In [19]: df_stored_procedure

Out[19]:

In [20]: # Drop view if it exists
query = "DROP VIEW Recent_Return_Divisions"
run_sql(query)

In [21]: # Create view that shows recent return categories
query = """
CREATE VIEW Recent_Return_Divisions AS
SELECT
 Division_Name,
 Department_Name,
 ROUND(SUM(Returns), 2) AS Return_Sum_Dollars,
 SUM(Return_Units) AS Return_Sum_Count
FROM
 Sales_MyStore
WHERE
 Sale_Week = (SELECT MAX(Sale_Week) FROM Sales_MyStore)
GROUP BY
 Division_Name,
 Department_Name
HAVING
 SUM(Returns) < 0;
"""
run_sql(query)

In [22]: # Select view, sorting by dollar amount
query = """
SELECT TOP 10 *
FROM Recent_Return_Divisions
ORDER BY Return_Sum_Dollars ASC;

Output:

This shows the categories that are most frequently returned.

Division_Name Department_Name Return_Sum_Dollars Return_Sum_Count

0 Division_18 Department_122 -239.04 15.0

1 Division_45 Department_097 -207.10 2.0

2 Division_36 Department_223 -92.50 7.0

3 Division_32 Department_238 -91.25 3.0

4 Division_16 Department_096 -78.52 2.0

5 Division_36 Department_237 -75.44 1.0

6 Division_18 Department_109 -67.66 7.0

7 Division_43 Department_282 -66.00 3.0

8 Division_17 Department_155 -65.18 4.0

9 Division_44 Department_080 -61.53 4.0

Visualization:

"""
df_view = run_sql(query)

In [23]: df_view

Out[23]:

In [24]: # Combine 'Division_Name' and 'Department_Name' into a new column
df_view['Division_Department'] = df_view['Division_Name'] + '_' + df_view['Department_Name']

Take the absolute value of 'Return_Sum_Dollars'
df_view['Return_Sum_Dollars_Abs'] = df_view['Return_Sum_Dollars'].abs()

Create the initial plot for the absolute value of 'Return_Sum_Dollars'
fig, ax1 = plt.subplots(figsize=(10, 10))
ax1.bar(df_view['Division_Department'], df_view['Return_Sum_Dollars_Abs'], color='b', alpha=0.6, label='Return_Sum_Dollars_Abs')
ax1.set_xlabel('Division_Department')
ax1.set_ylabel('Return_Sum_Dollars_Abs', color='b')
ax1.tick_params(axis='y', labelcolor='b')

Set the x-tick locations and labels
ax1.set_xticks(range(len(df_view['Division_Department']))) # Set x-tick locations
ax1.set_xticklabels(df_view['Division_Department'], rotation=90) # Set x-tick labels

Create a second y-axis to plot 'Return_Sum_Count'
ax2 = ax1.twinx()
ax2.plot(df_view['Division_Department'], df_view['Return_Sum_Count'], color='g', marker='o', label='Return_Sum_Count')
ax2.set_ylabel('Return_Sum_Count', color='g')
ax2.tick_params(axis='y', labelcolor='g')

plt.title("Highest Return Areas by Dollar Amount $ and Count")
plt.show()

Results & Conclusions

Key Findings:
Security Incidents Across Store Formats: StoreFormat_47 exhibited the highest average security incidents per store. It is critical that additional security
measures are implemented in these stores to curb incidents and maintain a safe environment for customers and staff.

States with Highest Theft: The states with the most alarming rates of average recorded daily theft are State_38, State_03, and State_20. It appears that loss
prevention measures may need to be concentrated more intensively in these geographical areas.

Impact of Recent Boycott on Sales: There is substantial evidence to suggest that the recent boycotts are affecting store performance. Sales have been in
decline year-over-year, but a sharp decline is observed in 2023, with the month of July experiencing a drastic 60.18% drop in sales compared to the same
month in the previous year.

Employee Reporting of Empty Packages: Employees with IDs 231, 098, and 196 have reported the highest number of empty packages for the current month.
The data also indicates that high-value items may be more susceptible to theft or loss, as inferred from the high retail sum despite a low item count reported
by Employee 098.

Recommendations:
Allocate More Security Resources: Given the high rate of security incidents at StoreFormat_47 locations, it would be advisable to allocate more security
resources, both human and technological, to these stores.

Targeted Loss Prevention: With States 38, 03, and 20 facing higher theft averages, loss prevention initiatives should focus more on these regions. This may
include installing advanced security systems and conducting frequent security audits.

Investigate the Impact of Boycotts: The drastic drop in sales indicates that the boycott is affecting store performance. A thorough analysis of customer
sentiment and public relations effectiveness should be conducted to formulate strategies to reverse this trend.

Investigate Employee Reports: Given the high reporting of empty packages by specific employees, it might be beneficial to dig deeper into the circumstances
around these reports. This includes both recognizing the vigilance of these employees and understanding whether these specific store sections are more
prone to theft or loss.

In []:

